MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search

نویسندگان

  • Tao Mei
  • Xian-Sheng Hua
  • Wei Lai
  • Linjun Yang
  • Zheng-Jun Zha
  • Yuan Liu
  • Zhiwei Gu
  • Guo-Jun Qi
  • Meng Wang
  • Jinhui Tang
  • Xun Yuan
  • Zheng Lu
  • Jingjing Liu
چکیده

This paper describes the MSRA-USTC-SJTU experiments for TRECVID 2007. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we investigated the benefit of unlabeled data by semi-supervised learning, and the multi-layer (ML) multi-instance (MI) relation embedded in video by MLMI kernel, as well as the correlations between concepts by correlative multi-label learning. For automatic search, we fuse text, visual example, and concept-based models while using temporal consistency and face information for re-ranking and result refinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MSRA atT TRECVID 2008: High-Level Feature Extraction and Automatic Search

This paper describes the MSRA experiments for TRECVID 2008. We performed the experiments in high-level feature extraction and automatic search tasks. For high-level feature extraction, we representatively investigated the benefit of global and local low-level features by a variety of learning-based methods, including supervised and semi-supervised learning algorithms. For automatic search, we f...

متن کامل

Shanghai Jiao Tong University participation in high-level feature extraction, automatic search and surveillance event detectionat TRECVID 2008

In this paper, we describe our participation for high-level feature extraction, automatic search and surveillance event detection at TRECVID 2008 evaluation. In high-level feature extraction, we use selective attention model to extract visual salient feature which highlights the most visual attractive information of an image. Besides this, we extract 7 low-level features for various modalities ...

متن کامل

Bilkent University at TRECVID 2007

We describe our fourth participation, that includes two high-level feature extraction runs, and one manual search run, to the TRECVID video retrieval evaluation. All of these runs have used a system trained on the common development collection. Only visual information, consisting of color, texture and edge-based low-level features, was used.

متن کامل

Universität Karlsruhe (TH) at TRECVID 2008

In this paper, we present the system developed by the Interactive Systems Labs at Universität Karlsruhe for the TRECVID 2008 evaluation. It is the second time that we participate in the TRECVID evaluation this year. Last year, the main goal of our first participation was to develop a common software framework for multimedia processing and to build baseline systems for the shot boundary detectio...

متن کامل

University of Central Florida at TRECVID 2007 Semantic Video Classification and Automatic Search

In this paper, we describe our approaches and experiments in semantic video classification (high-level features extraction) and fully automatic topic search tasks of TRECVID 2007. We designed a unified high-level features extraction framework. Two types of discriminative low level features, Spatial Pyramid Edge/Color Histograms and Bag of Visterms, are extracted from the key-frames of the shots...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007